ar X iv : 0 80 5 . 17 63 v 2 [ m at h . C V ] 1 4 Ju l 2 00 9 SINGULAR LEVI - FLAT HYPERSURFACES IN COMPLEX PROJECTIVE SPACE

نویسنده

  • JIŘÍ LEBL
چکیده

We study singular real-analytic Levi-flat hypersurfaces in complex projective space. We give necessary and sufficient conditions for such a hypersurface to be a pullback of a real-analytic curve in C via a meromorphic function. We define the rank of a real hypersurface and study the connections between rank, degree, and the type and size of the singularity for Levi-flat hypersurfaces. Finally, we study degenerate singularities of algebraic Levi-flat hypersurfaces. Among other examples, we construct a nonalgebraic semianalytic Levi-flat hypersurface with compact leaves that is a perturbation of an algebraic Levi-flat variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 6 . 33 11 v 2 [ m at h . A G ] 5 J un 2 00 9 ZARISKI - VAN KAMPEN METHOD AND TRANSCENDENTAL LATTICES OF CERTAIN SINGULAR K 3 SURFACES

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √

متن کامل

ar X iv : m at h / 04 07 51 7 v 1 [ m at h . C A ] 2 9 Ju l 2 00 4 OPERATORS , MARTINGALES , AND MEASURES ON PROJECTIVE LIMIT SPACES

Let X be a compact Hausdorff space. We study finite-to-one map-pings r : X → X, onto X, and measures on the corresponding projective limit space X∞(r). We show that the invariant measures on X∞(r) correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on X∞(r) which are associated via our correspondence with a function V on...

متن کامل

ar X iv : m at h / 04 09 02 9 v 1 [ m at h . A G ] 2 S ep 2 00 4 ACM BUNDLES ON GENERAL HYPERSURFACES IN P 5 OF LOW DEGREE

In this paper we show that on a general hypersurface of degree r = 3, 4, 5, 6 in P 5 a rank 2 vector bundle E splits if and only if h 1 E(n) = h 2 E(n) = 0 for all n ∈ Z. Similar results for r = 1, 2 were obtained in [15], [16] and [1].

متن کامل

ar X iv : m at h / 04 07 51 7 v 2 [ m at h . C A ] 3 0 Ju l 2 00 4 OPERATORS , MARTINGALES , AND MEASURES ON PROJECTIVE LIMIT SPACES

Let X be a compact Hausdorff space. We study finite-to-one map-pings r : X → X, onto X, and measures on the corresponding projective limit space X∞(r). We show that the invariant measures on X∞(r) correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on X∞(r) which are associated via our correspondence with a function V on...

متن کامل

ar X iv : 0 80 5 . 10 03 v 1 [ m at h . SP ] 7 M ay 2 00 8 GEODESICS ON WEIGHTED PROJECTIVE SPACES

We study the inverse spectral problem for weighted projective spaces using wave-trace methods. We show that in many cases one can “hear” the weights of a weighted projective space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009